2014 Consumer Confidence Report Data LAKELAND COLLEGE, PWS ID: 46004871

Water System Information

If you would like to know more about the information contained in this report, please contact Bruce Neerhof at (920) 946-4448.

Opportunity for input on decisions affecting your water quality

Lakeland College is a private facility. The public should contact Facility Director Richard Haen Office (920) 565-1031 Ext. 2266 or Operator Bruce Neerhof 920-946-4448

Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's safe drinking water hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Environmental Protection Agency's safe drinking water hotline (800-426-4791).

Source(s) of Water

Source ID	Source	Depth (in feet)	Status	
1	Groundwater	285	Active	
2	Groundwater	300	Active	

To obtain a summary of the source water assessment please contact, Bruce Neerhof at (920) 946-4448.

Educational Information

The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

 Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturallyoccurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which shall provide the same protection for public health.

Definitions

Term	Definition
	Action Level: The concentration of a contaminant which, if exceeded,
AL	triggers treatment or other requirements which a water system must
	follow.
	Maximum Contaminant Level: The highest level of a contaminant that
MCL	is allowed in drinking water. MCLs are set as close to the MCLGs as
	feasible using the best available treatment technology.
	Maximum Contaminant Level Goal: The level of a contaminant in
MCLG	drinking water below which there is no known or expected risk to
	health. MCLGs allow for a margin of safety.
MFL	million fibers per liter

Term	Definition
	Maximum residual disinfectant level: The highest level of a
MRDL	disinfectant allowed in drinking water. There is convincing evidence
WINDE	that addition of a disinfectant is necessary for control of microbial
	contaminants.
	Maximum residual disinfectant level goal: The level of a drinking
MRDLG	water disinfectant below which there is no known or expected risk to
NII (BEO	health. MRDLGs do not reflect the benefits of the use of disinfectants
	to control microbial contaminants.
mrem/yea	r millirems per year (a measure of radiation absorbed by the body)
NTU	Nephelometric Turbidity Units
pCi/l	picocuries per liter (a measure of radioactivity)
ppm	parts per million, or milligrams per liter (mg/l)
ppb	parts per billion, or micrograms per liter (ug/l)
ppt	parts per trillion, or nanograms per liter
ppq	parts per quadrillion, or picograms per liter
TCR	Total Coliform Rule
TT	Treatment Technique: A required process intended to reduce the
11	level of a contaminant in drinking water.

Detected Contaminants

Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date.

Disinfection Byproducts

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2014)	Violation	Typical Source of Contaminant
HAA5 (ppb)	DBP1	60	60	5	5		No	By-product of drinking water chlorination
TTHM (ppb)	DBP1	80	0	22.3	22.3		No	By-product of drinking water chlorination

Inorganic Contaminants

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2014)	Violation	Typical Source of Contaminant
ARSENIC (ppb)		10	n/a	5	2 - 5	9/11/2012	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2014)	Violation	Typical Source of Contaminant
								wastes
BARIUM (ppm)		2	2	0.057	0.027 - 0.057	9/11/2012	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
FLUORIDE (ppm)		4	4	0.2	0.2 - 0.2	9/11/2012	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
NICKEL (ppb)		100		1.3000	1.0000 -	9/11/2012	No	Nickel occurs naturally in

Contaminant (units)	Site	MCL	MCLG	Level Found	Range	Sample Date (if prior to 2014)	Violation	Typical Source of Contaminant
					1.3000			soils, ground water and surface waters and is often used in electroplating, stainless steel and alloy products.
SODIUM (ppm)		n/a	n/a	13.00	8.30 - 13.00	9/11/2012	No	n/a

Contaminant (units)	Action Level	MCLG	90th Percentile Level Found	# of Results	Sample Date (if prior to 2014)	Violation	Typical Source of Contaminant
COPPER (ppm)	AL=1.3	1.3	0.3490	0 of 10 results were above the action level.	9/11/2013	No	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching

Contaminant (units)	Action Level	MCLG	90th Percentile Level Found	# of Results	Sample Date (if prior to 2014)	Violation	Typical Source of Contaminant
							from wood preservatives
LEAD (ppb)	AL=15	0	10.10	0 of 10 results were above the action level.	9/11/2013	No	Corrosion of household plumbing systems; Erosion of natural deposits

Additional Health Information

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lakeland College is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Information on Monitoring for Cryptosporidium and Radon

Our water system did not monitor our water for cryptosporidium or radon during 2014. We are not required by State or Federal drinking water regulations to do so.